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I. INTRODUCTION 

Recent data from the LEP and SLC efe- collider experiments’ have demonstrated be- 

yond all doubt that there arc just three families of light leptons, where the lefthanded neu- 

trinos and charged leptons form sum @ U(l)y doublets, while the righthanded charged 

leptons exist as singlets under the same electroweak group. The number of righthanded neu- 

trino singlets remains completely uncertain, since such objects do not couple to the neutral 

weak 2” boson, even if they exist. They will play an important role in the Yukawa part of the 

Lagrangian, however, as they determine in a crucial way the structure of the neutrino mass 

matrix, the resulting neutrino mass spectrum and weak mixing angles of the mass eigenstates 

with respect to the weak flavor states and to the charged leptonic current interactions. Even 

a fourth heavy family of lefthanded lepton (and quark) doublets is a possibility. 

Recent suggestions that neutrinos have small masses compared to the GeV scale, in order 

to explain the observed solar neutrino deficit* in terms of matter-induced neutrino resonant 

oscillations,3 must be taken seriously. Moreover, the appearance’ of a 17 keV neutrino in 

beta decays observed with solid-state detectors has also helped to focus attention on the 

neutrino mass issue. In the minimal standard modei with no righthanded neutrino singlets, 

neutrino masses can be generated only through Xajorana mass terms involving just the 

lefthanded doublets in the presence of a Higgs triplet. But such a minimal mechanism can 

not explain5 the enhanced solar neutrino nonadiabatic MSW v. - v,, mixing effect. In order 

LO do so. one must introduce righthanded singlets into the model. 

While other possibilities6 have been explored in connection with the 17 keV neutrino, a 

rather natural choice is to introduce three righthanded neutrino singlets to parallel the three 

sets of righthanded charged leptons, and up and down quarks. This is certainly the choice of 

models based on grand unification involving the unifying groups’ of SO(lO), flipped SU(5) x 
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b’(l), Es, etc. where an SU(4) subgroup can break according to SU(4) -t SU(3).@U(l) with 

4 4 3@1 as a lepton emerges for each colored triplet of quarks. In such models, the neutrino 

Dirac mass submatrices should have forms closely allied with the up quark mass matrix, while 

the charged lepton mass matrix parallels the down quark mass matrix. In short, the same 

VEVs apply for the quarks and leptons, at least for the Dirac sectors, though the Ynkawa 

couplings may differ. The lefthanded and righthanded Majorana submatrices which can only 

arise from couplings to Higgs triplets and singlets, respectively, remain undetermined in the 

absence of a specific model. If the righthanded Majorana submatrix is rank 3 and has entries 

O(M) where h4 >> ml, a typical lepton mass, this class of models exhibits the well-studied 

seesaw mechanism.* This enables one to understand easily why the light neutrino masses 

are 0(mf/M), so much smaller than their charged lepton counterparts. However, if the 

righthanded Majorana submatrix is rank 2 or less, the seesaw mechanism is incomplete,g 

and one or more pairs of Dirac (or pseudo-Dirac) neutrinos are generated. 

In order to investigate the neutrino masses and mixings which arise due to the quarklike 

forms for the Dirac submatrices, one must adopt some model or empirical form for the quark 

mass matrices. Although the precise form of the quark mass matrices is not known, the 

principle of hierarchical chiral symmetry breaking advanced years ago by Fritzschl”‘seems 

to play an important role, as all the hadronic charged-current constraints on the Cabibbo- 

Kobayashi-Maskawa l1 (CKM) mixing matrix and higher-order flavor-changing processes can 

be well satisfied in this framework. A set of particularly simple empirical matrices” which 

works in the neighborhood of a top quark mass near 130 - 135 GeV was used by the author13 in 

(I) for the Dirac submatrices; the righthanded Majorana matrix was chosen to be diagonal 

for simplicity. Here we shall discuss the model and results in somewhat more detail and 

perform a Monte Carlo analysis on Euler rotations of the diagonal righthanded Majorana 

matrix, so as to determine the full range of solutions in the 6m:, vs. sin’2Bij neutrino 
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oscillation planes. 

We note in passing that attemptsl’ to generate a 17 keV Dirac neutrino in the above 

framework with a rank 2 righthanded Majorana submatrix generally fail to satisfy all the 

experimental constraints. The Dirac submatrices apparently must involve a very different 

Higgs mechanism than that for the quarks and charged leptons. In particular, the model 

that Babu and Mohapatra’s constructed is definitely non-hierarchical in texture. 

In Section II we discuss the empirical forms of the quark mass matrices we shall adopt 

for the leptonic Dirac submatrices. The results obtained in Section III apply for diagonal 

righthanded Majorana submatrices. In Section IV we perform Euler rotations on the diagonal 

Majorana submatrices and obtain the preferred regions in the 6mfj vs. sin2 28ij neutrino 

oscillation planes. A summary of the results is presented in Section V. 

II. EMPIRICAL QUARK MASS MATRICES 

The Fritzsch” quark mass matrices based on hierarchical chiral symmetry breaking 

MuE[; ; j, MD+) 21 j (2.1) 

have served as a standard set for over twelve years since they were introduced. It is gener- 

ally recognized, Is however, that the increased accuracy with which the Cabibbo-Kobayashi- 

!Jaskawa’l (CKM) mi.xing matrix elements are now known has limited the utility of the 

matrices to top quark masses mt ZZ 100 - 110 GeV. Experimentally the present lower bound 

on mt is conservatively placed at 89 GeV by the CDF collaborationI at Fermilab. 

Bearing this in mind, the author” sometime ago made a more general search of quark 

mass matrices which exhibit hierarchical chiral symmetry breaking but admit top quark 
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masses higher than attainable with the Fritzsch matrices. For this purpose, the following 

forms were adopted 

Mu= 

0 A D 0 A’ D’ 

AEB A” E’ B’ 

,D’ B C D” B” C’ 

with the explicitly assumed relaxed hierarchies 

0 << I4 IEl, IP << IBI << ICI 

0 << IA’\, IE’I, ID’\ c< IB’I -c-c IC’I 

(2.2a) 

(2.26) 

in an effort to determine the allowed top quark mass spectrum. There are now 14 parameters, 

10 amplitudes and 4 phase angles, in place of Fritasch’s 8 parameters to explain the 6 quark 

masses, 3 mixing angles and 1 mixing phase. The complexity of the computer search was 

reduced by choosing to ignore the small u-quark mass by taking E = A = 0 and D real. A 

perturbation about the results obtained a postieri justified this procedure. The key feature 

which admits higher top quark mass solutions consistent with the experimental constraints 

was found to be the nonvanishing diagonal elements, E and E’, expecially the latter. 

The search method employed then consisted of the following steps:‘* 

(1) Pick a top quark mass and vary the free mass matrix parameters. All mixing matrix 

elements I(VcxIM);jI are required to fit the experimental values determined by Schubert’s to 

within one standard deviation accuracy. 

(2) The commutator determinant of the mass matrices is used to compute the Jarlskog J- 

value” from which sin 6 can be determined with the help of the l(V~~~)ijl. The first-second 

quadrant ambiguity for the CP-violating phase 6 is taken into account. 
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(3) Additional constraints were imposed on the following parameters: 

0.07 5 Iv&/v,,1 5 0.15 

1.3 5 lv,;v,,12S N (1.8 f 0.3)w 5 2.3 

0.55 5 BK 5 0.90 

where BB and BK are the B and K meson bag parameters, FB is the B meson decay constant 

and S is a radiative correction factor. 

(4) The procedure is repeated for different mt. 

Two peaks occur in the top quark mass probability distribution, especially for cos 6 > 0, 

which correspond to rnt = 135 i 25 GeV and mt = 300 f 100 GeV for a strange quark mass 

of m.( 1GeV) = 120 MeV, with the lower peak strongly preferred. The results obtained from 

this quark mass matrix approach are in good agreement with other analyses such as that 

by Kim, Rosner and Yuan”’ which use the approximate Wolfenstein parametrization*l of 

the mi.xing data and present chi-square contours in the 7 vs. mt plane, where 7 is one of 

the Wolfenstein parameters. Although one can not rule out a very massive top quark with 

mt >> 200 GeV on the basis of the flavor-changing data alone, the most probable value of 135 

GeV is in good agreement with that deduced from the neutral-current data by Langacker, 

Ellis znd Fogli, and others.?’ 

A careful, but not exhaustive, search for a viable alternative to the Fritesch model was 

also carried out. One special empirical model was found which fits all the data remarkably 

well with a top quark mass in the narrow range from 130 to 140 GeV - at the very peak of 

the mass spectrum - and is described by the following set of quark mass matrices:l* 

MU= 

0 4u .%I 

Au Au &I 

4u Bu Co IT MD= 

0 iAb -A’, 

-iA’, -A’, B& 

-Ab Bb Cb ! (2.3) 
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with just 6 real parameters ordered according to ilu < Bo < Cv, A', < Bb < CL. With 

m.(lGeV) = 120 MeV again chosen and m t = 133 GeV, these matrices lead to a CKM 

mixing matrix which lies well within the experimental errors assigned by Schubert and to 

the results /Vu&b1 = 0.72, ~~d~~:,~2S = 1.32 corresponding to zd = 1.7, BK = 0.78 for the 

bag parameter in K decay, and E’/E N 0.77 x 10-s. For m.(lGeV) = 130 MeV, the preferred 

value for the top quark mass drops to 125 MeV. 

In what follows we shall make use of these simple empirical forms of the quark mass 

matrices for the leptonic Dirac sector. The clear advantage is that they represent the most 

probable top quark mass extremely well and involve so few parameters, six instead of eight 

for the Fritzsch model. This will greatly aid in our analysis of the neutrino situation, where 

one must assign extra parameters to the Majorana submatrices. 

III. APPLICATION TO LEPTONS WITH DIAGONAL RDI 

We now extend our analysis to the lepton mass matrices as suggested by grand unified 

models7 based on SO(lO), flipped SU(5) x U(l), SU(15), Es and the like, in order to 

compute neutrino masses and mixings. For this purpose, we first note that with three ieft- 

!:anded xutrinos tranforming as members of .5U(2)~ x U(l), doublets and three righthanded 

neutrino singlets, we must deal with 6 x 6 matrices. In terms of the weak flavor bases 

BL = {u’i~, (v:)~}, BR = {(v,!c)~, &} and likewise for the charged leptons, the mass 

matrices have the following general complex symmetric forms 

h=(; ‘;I), .lli=j;; $“) (3.1) 

for neutrinos and charged leptons, respectively. Here MN and Mr. are the Dirac mass 

submarrices, and L.QJ and R,w are the lefthanded and righthanded Majorana neutrino mass 
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submatrices. 

From here on we shall assume that the leptonic Dirac submatrices MN and ML have the 

same forms as the quark matrices Mu and MD, respectively, in (2.3) under the assumption 

that the same Higgs doublet couples to MN and Mu, and likewise for ML and MD: 

MN=[;I ;: ii), ML=[~; ; :‘:L1 (3.2) 

We allow the particular values of AN and A~J, and A’, and AL, to differ since the Ynkawa 

couplings for the neutrinos and up quarks, and likewise charged leptons and down quarks, 

need not be the same. In the absence of Higgs triplets, which we shall conventionally 

assume, z3 LM is the zero matrix since the lefthanded doublets couple to form a symmetric 

SU(2)L triplet state; on the other hand, the righthanded Majorana neutrino mass terms in 

RM can arise from couplings to Higgs singlets or from bare mass terms in the fundamental 

Lagrangian. For simplicity and a first look in this Section, we shall take RM to be diagonal, 

as done in (1),13 and equal to 

DM = diag(&, &, 0s) 

The neutrino mass matrix then has the simple form 

(3.3) 

iile macnces in I& weu &es in ~3.4) and (3.i) are reiarea LO ~nose III tne mass bases 

by 

MN = UJDNUR, Mt = @D U’ L R (3.5a) 

in terms of the four unitary transformation matrices UL, UR, UL and VA, and the diagonal 
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mass matrices 

DN = diag(A,, A,, &, .h, kr As), DL = diag(X;, X;, X;) (3.5b) 

where the A, and A> are the neutrino and charged lepton masses up to a sign. The charged- 

current interactions involve just the lefthanded neutrinos and charged leptons in the weak 

bases 

L(,” = -gv,&Y;&w, + Le. 

In terms of the mass eigenbases, 

(3.60) 

‘:‘,” = -g~7p(VCKM)~jlj~ + h.C. (3.6b) 

so the counterpart of the quark CKM matrix is 6 x 3 and given by 

( VCKM)aj = ( UL)ai( ut')ij7 a=l-66; i,j = 1,2,3 (3.k) 

under the assumption that there are 6 neutrino mass states but just 3 charged lepton mass 

states in the .5U(2)~ x U(l)y electroweak theory. 

In order to calculate the squares of the mixing matrix elements, we generalize the pro- 

jection operator technique of Jarlskogz4 and find 

I( VCKM)ojl’ = Tr [Pap:] = (pa)kl(Pi)lk 

where 

P, = uLPD u, = n (ii,1 - &f,,7)/ n(,,, - ,i,) 
7#0 S#- 

P; = U$P’“U;. = n&I - ML)/ n(X; - Xi) 
k#j l#j 

(3.7a) 

(3.7b) 

(3.7c) 
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and P* and PrD are the diagonal projection operators. In writing these expressions, we 

have explicitly made use of the fact that our matrices MN and Mr. are Hermitian, so that 

we can take Un = ILL and Ul, = UL to diagonalize the matrices. The trace expressions 

are calculated analytically through use of MACSYMA and then evaluated numerically in a 

FORTRAN program. To achieve sufficient accuracy (1 part in lOs), we have used quadru- 

ple precision on a VAX computer to calculate the mass eigenvalues X, and Xi from the 

characteristic equations. 

We begin our search for the neutrino masses and mixings allowed in our model by deter- 

mining the charged lepton parameters in (3.2) uniquely to be 

A; = 0.007576, B; = 0.4181, CL = 1.686 GeV (3.84) 

from the known charged lepton masses and the invariant properties of the traces and deter- 

minant relative to the weak and mass eigenbases. By way of comparison, we note that for 

the special set of quark mass matrices in (2.2) with mt = 133 GeV giving the best fit to the 

flavor-changing data, the 6 parameters in M~J and MD are determined at 1 GeV to be 

& = 0.0755, Bv = 17.54, Co = 213.6 GeV 
(3.8b) 

A’, = 0.0274, B& = 0.6782, Cb = 5.214 GeV 

If we neglect the small running effect of the Yukawa couplings, the charged lepton and down 

quark parameters are scaled by 

&/A;. = 3.62, B;/B;, = 1.62. cgc;, = 3.09 (3.8~) 

For point of reference then, we note that the neutrino parameters scaled in the same fashion 

would be given by 

& = 0.0209, Bp, = 10.83, CN = 69.13 GeV (3.8d) 
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The Majorana entries in F&M, which we have assumed here to be diagonal and equal 

to DM, remain completely undetermined; however, the well-known seesaw effects for the 

neutrino mass matrix MN implies that if all entries in MN are increased by a factor of 10 

and the diagonal entries in DM are increased by a factor of 100, the light neutrino masses 

remain unchanged. Moreover, the mixing matrix elements V,j are unchanged. Thus in our 

search of solutions for the masses and mixing angles, we have the freedom to fix CN = 69.13 

as in (3.8d) above and to vary only AN,BN and all three Di. 

Our first important observation is that the mixing element VI2 E Vve, is totally insensitive 

to the choice of the 13i’s over an extremely large range. Thus contours can be drawn in the 

.~N/CN vs. BN/CN plane for fixed IV,,1 as shown in Fig. 1. In fact, we find a minimum 

value of IV,,1 such that 

sin’ 2012 - 41V1*lZ 1 0.0193 (3.9) 

The acceptable region in this parameter space is bounded by the closely-spaced dotted curve 

within which the hierarchical conditions 

0 < lAN/CNi s 0.21BN/CN) s 0.04 (3.10) 

are satisfied. Our model, based on the structure of the quark mass matrices, loses much of 

its credibility if these conditions are badly violated. 

JVhile the parameter space of Fig. 1 is highly model-dependent, we mention in passing 

that in the Fritzsch model no such lower bound on !V,,l* is obtained, if one allows the phase 

~ngx qAz ,n (L.il 10 run uown LO u”; imwever, one ~riuscil moue1 can remoray nt the quarK 

data onlyle if $a, lies in the range 80” S da, SJOO”. For these values, the lower bound in 

(3.9) also applies approximately. 

This lower bound has interesting implications for the expected solar neutrino capture 
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rates in the experimentally preferred nonadiabatic Mikheyev, Smirnov and Wolfenstein3 

(41SW) region, whereby one can understand the observed depletion of the solar neutrino flux 

due to resonant oscillations as the emitted neutrinos pass through the dense solar matter. In 

Fig. 2 we show the allowed MSW region bounded by the dotted curves and the gallium solar 

neutrino capture rate contours (isoSNUs), as calculated by Parke and Walker.25 The lower 

bound on iV~,l*, as indicated by the dotted vertical line at 4sin2f& = 0.0193, translates 

into a maximum capture rate in gallium of about 25 SNU in the nonadiabatic region along 

the hypotenuse of the triangular-shaped region. From the work of B.&call and Haxton,ze 

who have considered a much wider range of solar models, the upper bound on the gallium 

solar neutrino capture rate can be as high as 40 SNU. The preliminary data from the SAGE 

experiment” are quite consistent with these observations. 

We now iix /V,,/' Y sinZB12 = 0.00485 and adjust &n:, = rn& - mZ, so that the point 

lies in the narrow allowed nonadiabatic MSW band in Fig. 2 corresponding to” 

&n:,sinZ811 = 1.0 x lo-* eVZ (3.11) 

i.e., Sm$ z 2.06 x 10m6 eV2. If we do this by taking all D;'s comparable while moving 

upward along the fixed lV,,1' = 0.00485 contour in the AN/CN vs. BN/CN plane of Fig. 1, 

we traverse in a downward direction the solid curve in the &n$ vs. sin* 2& plane in Fig. 

3(a). In fact, we can explore the dependence of 6mz, and sin2 2023 on the parameters D;, for 

the same point (jKzl” = 0.00485, ST& = 2.06 x lo-’ eV2) in the MSW band of (3.11) by 
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running along the same contour in Fig. 1 for the following Majorana neutrino cases 

(a) D1 = 10zD1 = lo403 (upper dot - dashed curve) 

(6) D1 = lOD2 = lO’D3 (upper dashed curve) 

(c) DI - Dz - & (solid curve) 

(d) 10zDl = lo& = D3 (lower dashed curve) 

(e) 10’01 = lO’D2 = 03 (lower dot - dashed curve) 

(3.12) 

where the description for each case pertains to the curves in Fig. 3(a). The closely-spaced 

dotted curves represent the present experimental upper bounds from the E531 experiment” 

at Fermilab and CDHSW3’ at CERN. The allowed region of interest lies between these 

experimental curves and the dotted curve obtained from the locus of points for which the 

hierarchy condition BN/CN < 0.20 in (3.10) is satisfied. For the choice of parameters 

selected in (3.12), there is a very narrow allowed band lying along sin* 2823 = 0.0037 with a 

tau neutrino mass in the range 12 2 m, ZZ 120 eV. The considerably larger allowed region 

occurs with 0.15 g m, s 5 eV, and 0.004 s sin’2013 ,$ 0.16. The points indicated by 

crosses in Fig. 3(a) correspond to the special set of parameters AN,B,~ and CN given in 

(3.8d) for which ;V,,l* = 0.00488 with the D;‘s adjusted to give 6m:, = 2.05 x lo-’ eV* in 

the nonadiabatic MSW band of (3.11). Th e corresponding allowed region in the && vs. 

sin* 2l& plane is not shown here, but lies in a narrow band centered around sin’ 2& = lo-‘. 

In Fig. 3(b) the results are presented for the point (17112i* = 0.05, &n:, = 2.0 x 10m7 eVZ) 

in the MSW band, where the running occurs along the upper dot-dashed contour in Fig. 

1. Note that the allowed region is somewhat distorted from that appearing in Fig. 3(a). 

The required hierarchy conditions (3.11) are not satisfied here for cases (d) and (e) of (3.12) 

above. 

It is of some interest to exhibit the mixing matrix that emerges for two special, but typical, 
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cases. The projection operator technique employed enables us to calculate independently the 

squares of all 18 elements as displayed below. For the following choice of parameters 

AN = 0.06 GeV, BN = 14.0 GeV, CN = 69.1 GeV 
(3.13a) 

D, = 5.16 x 1O1’ GeV, Dg = 5.16 x 10” GeV, Da = 5.16 x 10”’ GeV 

corresponding to the left-most point on the upper dot-dashed curve of Fig. 3(a), we obtain 

for the light neutrino masses 

ml = 1.16 x 10-l’ eV, m2 = 1.44 x 10m3 eV, ma = 96.4 eV (3.13b) 

with the heavy ones being equal to Dz, Dz, and Dt in increasing order; the squares of the 

mixing matrix elements are 

f 0.99513 0.00485 0.00002 

0.00484 0.99429 0.00087 

0.00003 0.00086 0.99911 
lKajl* = 

0.55 x lo-l8 0.16 x 1O-‘B 0.19 x lo-l3 

0.22 x 10-22 0.37 X 10-20 0.70 x lo-‘@ 

\0.39 x 10-30 0.75 x iw-~~ 0.20 X 10-Z’ 

(3.13c) 

On the other hand for a second set of parameters yielding the point marked with a cross on 

the dashed line of Fig. 3(a) 

AN = 0.03 GeV, BN = 10.8 GeV, CN = 69.1 GeV 
(3.14a) 

DI = 1.52 x 1~0” GeV. Dz = I..52 x 10” GeV. D1 = 1.52 x 1Ol3 GeV 

we obtain for the light neutrino masses 

77x1 = 9.15 x lo-‘0 ev, ma = 1.44 x 10m3 eV, m3 = 0.40 eV (3.14b) 
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with the heavy ones being equal to D1, Dz, and 03 in increasing order; the squares of the 

mixing matrix elements are 

0.99514 0.00485 0.00002 

0.00478 0.98457 0.01064 

0.00008 0.01058 0.98934 
IKjl' = 

0.11 x 10-25 0.22 x 10-13 0.56 x 10-23 

I 0.14 0.10 x x lo-= 10-1’ 0.25 0.12 x x 1O-1’ 10-21 0.48 0.21 x x lO+’ 10-10 

(3.14c) 

From the above, we easily see that all three columns of each matrixindividually sum to unity, 

as must be the case since a. given flavor state is a linear combination of mass eigenstates with 

unit norm. The first three rows also sum to unity, as only these three mass eigenstates 

participate in the lefthanded weak interactions; the fourth, fifth and sixth mass eigenstates 

with heavy masses are effectively decoupled from the weak interactions. Hence the mixing 

matrices are essentially 3 x 3, and all neutrino mass eigenstates are of the Majorana type. 

The “unitary” nature of (3.13~) and (3.14~) provides an excellent numerical check on our 

procedure. 

While IV,,/ is independent of Dir Dz and D3; V,, does depend on these values as seen in 

(3.13~) and (3.14~) above. The clear suggestion from our work in this Section is that much 

of the theoretically-allowed region in the b& vs. sin* 2ez3 plane has been excluded by the 

present experimentally-forbidden region. Hence much effort should be made to restrict the 

allowed region even further. In the next Section where we consider nondiaeonal forms of 

the Majorana submatrix RM, we shall see that this striking conclusion is weakened to some 

extent. 
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Iv. MONTE CARLO ANALYSIS FOR NONDIAGONAL RM 

We now wish to consider the more general situation where the righthanded Majorana 

submatrix RM is nondiagonal. Since RM has the following structure in flavor space with * 

a Higgs singlet 

(RM)ij = (v,!‘)Lv~~+ = v,!~CV:RQ (4.1) 

it can be chosen real symmetric and diagonalized by an orthogonal transformation. This 

suggests that we can use our previous analysis in Section III and simply rotate the diagonal 

DM in order to obtain the nondiagonal form 

RM = RT(a,B,r)D~R(a,Ar) (4.2) 

Hence we can consider each one of the five cases in (3.12) and perform this Euler rotation. 

Of course, for case (3.12~) which is proportional to the unit matrix, the rotated DM remains 

unchanged, so the solid curves in Figs. 3(a,b) remain unchanged. 

In order to handle the other four cases in a meaningful way, we shall concentrate on the 

case iV,,l' = 0.00485 illustrated in Fig. 3(a) and proceed as follows. We select three points 

along each of the dashed and dot-dashed curves in Fig. 3(a) which lie in the physically- 

interesting hierarchical region for which 

1 

(0.0868, 1.45 x lo-“) 

(BN/CN,AN/CN) = (0.156, 4.34 x lo-‘) (4.3) 

(0.203, 8.68 x 10-4) 

These points on the four curves are indicated by crosses in Fig. 4(a), while the corresponding 

points of the solid curve of Fig. 3( a are indicated with cross potents. For each one of these ) 

points we perform Euler angle rotations of the corresponding diagonal righthanded Majorana 

submatrix DM. While the value of IV,,1 ’ is unaffected by such rotations, we must rescale 
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the D;‘s, so that the point in the MSW band at (Iv121 = 0.00485, 6m& = 2.06 x 10-s eV’) 

is retained after each rotation. In order to cover the full Euler angle parameter space, we 

have used a Monte Carlo analysis, whereby 5000 random Euler angle rotation matrices are 

applied in turn to each point singled out. The region in the 6m& vs. sinZ2&s plane is 

binned, and the numbers of points in each bin arising from all 60,000 rotations are presented 

as a scatter plot in Fig. 4(a). This same procedure is used to obtain a scatter plot for the 

6m& vs. sin* 281s plane in Fig. 4(b). 

The results obtained are rather puzzling. While most of the points resulting from the 

rotation of DM remain inside the original boundary indicated now by a dot-dashed line in 

Fig. 4(a), some points are randomly distributed several orders of magnitude outside this 

boundary. The resultant spread of points in the bm:, vs. sin’20is plane of Fig. 4(b), 

however, is considerably more constrained. 

In order to illustrate the types of nondiagonal RM which lead to these atypical points, 

we have starred two points labeled A and B in Fig. 4 and present their particular RM below, 

where the smallest nonvanishing entries are normalized to unity: 

2.9 2.0 1.4 

Point A : (4.4a) 

1.4 1.3 1 

(4.46) 

For point A, RM was obtained by a simple rotation of DM with the diagonal entries scaled 

as in case (b) of (3.12), while R M for point B was constructed to give a hierarchical form 

by fiat. Of course both matrices must be scaled accordingly in order to obtain the desired 

MSW point in the 6m& vs. sinZ28i2 plane. The third set of values for (BN/CN, &/C,v) 
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in (4.3) was used for points A and B. 

The righthanded Majorana submatrix R.+g for point A exhibits an inverted hierarchy 

with nonincreasing entries as one moves from one skew diagonal to another. By inspection 

of many other cases, we find that other RM with inverted hierarchies which do not have this 

property yield points which lie within the original boundary in Fig. 3(a). The form of R.M 

for point B is of some interest, for it exhibits somewhat the same hierarchy as the Dirac 

submatrix MN in (3.2). 

V. SUMMARY 

We have started from a grand-unified-type model with three families of quark and lepton 

lefthanded doublets and a set of three righthanded neutrino singlets to parallel the three 

sets of righthanded quark and charged-lepton singlets. The Dirac mass submatrices for the 

neutrinos and charged leptons are chosen to have the same forms as those associated with 

the up and down quarks, respectively. For this purpose we used a simple set of mass matri- 

ces, exhibiting the hierarchical chiral symmetry-breaking structure with just six parameters, 

which we have shown earlier to work well for quarks if the top quark mass is near 130 - 135 

GeV as preferred by the neutral-current and flavor-changing data. In the absence of Higgs 

triplets, only the righthanded Majorana submatrix RM remains completely undetermined. 

We chose here to ignore the possible existence of a 17 keV neutrino and to consider only 

rank three RM’S so the standard seesaw mechanism generates light Majorana neutrinos. 

We then proceeded with a phenomenological analysis which first considered only diagonal 

forms for RM and then extended it to nondiagonal R M through a Monte Carlo analysis 

involving Euler angle rotations. In the process, we find a lower bound on sinZ2011 which 

translates into an upper bound of 25 - 40 SNU for the solar neutrino capture rate in gallium, 
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provided the nonadiabatic MSW effect is the correct interpretation for the observed solar 

neutrino flux deficit. 

With regards to the 6m& vs. sin’2023 oscillation plane, it is clear from our study 

that while the most probable values, in a purely statistical sense, lie close to the present 

experimentally-excluded region, there are many atypical points several orders of magnitude 

removed which may, in fact, be selected by Nature corresponding to some quite reasonable 

theoretical choices. In the absence of a strong theoretical basis or other important exper- 

imental information, we must await the experimental discovery of V~ ++ v, and possibly 

v. ++ v, oscillations to narrow the theoretical possibilities. 

Finally it should be emphasized that, while our whole analysis has been based on the 

particular forms of MN and ML given in (3.2), a few spot checks with the Fritzsch forms 

indicates that our results are not strongly dependent on the choice in (3.2). Our results 

reflect more importantly on the basic assumption that the hierarchical forms for the quark 

and lepton mass matrices are closely related in the Dirac sector. 
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Figure Captions 

Figure 1: Contours in the A.FJ/C.P+ vs. BN/CN plane for fixed values of IVl,/z as indicated. 

The closely-spaced dotted curve defines the region in which the hierarchical 

conditions of Eq. (3.10) are satisfied. 

Figure 2: IsoSNU contours calculated by Parke and Walker for the gallium experiments 

superimposed on the allowed MSW region indicated by the closely-space dotted 

points. The vertical dotted line marks the lower bound on sinZ2& found in 

our model. The cross indicates the point obtained by the parameter set (3.8d) 

when constrained to the nonadiabatic MSW region by an appropriate choice of 

heavy Majorana masses. 

Figure 3: Contours in the &r& vs. sin’ 282s plane for fixed 6m& and IV,,l” N 0.25 sin’ 2& 

in the nonadiabatic MSW region, with the ratios AN/CN and BNICN and the 

heavy Majorana masses varying along the curves. The Majorana masses are 

scaled according to the convention given in (3.12) with bm& = 2.06 x 10-s 

eV’ and IV,,!’ = 0.00485 in (a) and 6m& = 2.0 x lo-’ eVZ and iV,,l’ = 0.05 

in (b). The allowed regions lie between the dotted curves representing lower 

bounds for a reasonable hierarchy of parameters stated in (3.10) and the closely- 

spaced dotted curves representing the upper bounds from the ES31 and CDHSW 

experiments. The crosses indicate the points obtained by the parameter set 

[3.8d) when constrained to the nonadiabatic MSVV +on hy annronriate choices 

of heavy Majorana masses. 

Figure 4: Scatter plots in (a) the 6m~, vs. sin’ 281s and (b) bm:, vs. sin* 281s planes 

obtained by rotating the diagonal DM matrices in (3.12) through Euler angles 



-23- FERMILAB-Pub-91/182-T 

chosen by 5000 sets of Monte Carlo throws for each point indicated by a cross in 

(a) lying on the curves in Fig. 3(a). The points indicated by cross potents in (a) 

remain unchanged by rotations of DM’S proportional to the identity. The solid 

curves represent the present experimental upper limits, while the dot-dashed 

curve in (a) now corresponds to the hierarchical lower bound in Fig. 3(a). 

Points A and B refer to the special cases discussed in the text. For comparison 

only, the mixing angle suggested by the recent experiments claiming to see a 17 

keV neutrino in their data is indicated by the arrow in. (b). 
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